C-C Bond-Cleavage of α-Azido-Steroidal Ketoximes

Thomas T. Takahashi,*a K. Nomura,b and James Y. Satohb

^a Department of Chemistry, The Jikei University School of Medicine, Kokuryo, Chofu, Tokyo, 182, Japan ^b Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Tokyo, 171, Japan

 α -Azido-steroidal oximes were cleaved to provide mono- and di-cyano derivatives under standard Beckmann conditions.

Our interest in new synthetic approaches to biologically active steroidal alkaloids led us to investigate C–C bond-cleavage of α -azido steroidal oximes. We recently reported a novel type of

C-C bond-cleavage: namely the transformation of a 2α -azido- 5α -cholestan-3-one into a 2-nitrilo-2,3-seco- 5α -cholestan-3-oic acid.¹ C-C bond-cleavage reactions giving ω -cyano carbonyl

			Conditions	
Reactant	Reagent	Solvent ^a	$(t/^{\circ}C ; min)$	Product (% yield) ^b
(1)	POCl ₃	Pyridine	110;20	(11) (94)
(1)	TsCl	Pyridine	110;30	(11) (85)
(1)	SOCl ₂	Pyridine	27;60	(11) (73)
(1)	SOCl ₂	Neat	0;15	(11) (70)
(1)	PCl ₅	Pyridine	110;20	(11) (70)
(1)	MsCl	Pyridine	110;30	(11) (65)
(1)	PPA	Neat	120;15	(13) (36)
(1)	P_2O_5	Benzene	80;20	(11)(39) + (13)(23)
(2)	Al ₂ O ₃ Column ^c		r.t.	$(11) (22) + (6)^d$ (trace)
(3)	$SOCl_2$	Neat	0;15	(12) (64)
(4)	POCl ₃	Pyridine	70;15	(7) (20) + (9) (45)
(5)	POCl ₃	Pyridine	70;15	(8)(32) + (10)(47)

^a The reactions were carried out in dry solvents, with 6 mol. equiv. of reagent. $Ts = p-MeC_6H_4SO_2$; $Ms = MeSO_2$; PPA = poly-phosphoric acid. ^b Isolated yield. ^c Carried out by passing a benzene solution of (1) through an alumina column. ^d The structure proposed for (6) has not been confirmed.

derivatives have been studied in the Beckmann fragmentation of α -substituted oximes.² However, the C–C bond-cleavage of an α -azido oxime giving a dicyano derivative is unknown, and we now report the C–C bond-cleavage of α -azido steroidal oximes under Beckmann conditions.

In a typical reaction, phosphorus trichloride oxide (0.25 ml) was added to a solution of 2α -azido- 5α -cholestan-3-one oxime (1) (200 mg) in dry pyridine (5 ml), and the mixture was heated at 110 °C for 20 min. Crystallization of the resulting oil from light petroleum gave (11) in 94% yield, m.p. 115—119 °C, which was identified from its i.r. [ν_{max} 2240 cm⁻¹ (C=N)], ¹³C n.m.r. [δ (CDCl₃, Me₄Si) 118.89 and 116.86 p.p.m. (C=N)], and mass spectrum [m/z 396 (M^+), 356 (M^+ – CH₂CN), and 316 (M^+ – 2CH₂CN)]. Similarly, the side-chain α -azido oxime (5) gave (8) (32%) and (10) (47%).

Results for other conditions are in Table 1. Thus, the α -azido oximes (1)—(5) are cleaved to give the cyano derivatives in 20—94% yield after a short reaction time. All new

compounds had satisfactory analytical and spectroscopic data.[†]

We propose the mechanism in Scheme 1 for this interesting cleavage: Beckmann fragmentation is followed by elimination of N_2 from an iminodiazonium ion intermediate.

Received, 2nd September 1983; Com. 1183

References

- 1 T. T. Takahashi and J. Y. Satoh, J. Chem. Soc., Perkin Trans. 1, 1980, 1916.
- R. K. Hill, J. Org. Chem., 1962, 27, 29; C. W. Shoppee and S. K. Roy, J. Chem. Soc., 1963, 3774; A. Hassner and W. A. Wentworth, Chem. Commun., 1965, 44; J. K. Paisley and L. Weiler, Tetrahedron Lett., 1972, 261; G. Rosini, A. Medici, and S. Cacchi, Synthesis, 1975, 665; D. Miljkovic and J. Petrovic, J. Org. Chem., 1977, 42, 2101.

[†] M.p.s and selected spectroscopic data; (1), m.p. 134—136 °C; i.r. (KBr) 3500—3100, 2100, and 1659 cm⁻¹; ¹H n.m.r. (60 MHz, CCl₄, Me₄Si) δ 3.10 (br.d, 1H, 4 α -H), 3.94 (dd, 1H, J 6 and 12 Hz, 2 β -H), and 9.04 (br.s, 1H, =N-OH); (2), m.p. 103— 106 °C; (3), (oil); (4), m.p. 182—184 °C; i.r. (KBr) 3370, 2130, 1710, and 1280 cm⁻¹; ¹H n.m.r. (CDCl₃) δ 4.05 (br.s, 2H, 21-H₂), 4.45—4.90 (br.m, 1H, 3 α -H), and 8.85—9.05 (br.s, 1H, =N-OH); (5), m.p. 177—178 °C; (6), m.p. 160—163 °C; i.r. (KBr) 3500— 3100 and 1620 cm⁻¹; ¹H n.m.r. (CCl₄) δ 9.49 (s, 1H, =NH); ¹⁸C n.m.r. (CDCl₃, Me₄Si) δ 167.34 (C=NH) and 187.93 p.p.m. (C=O); (7), m.p. 196—199 °C; i.r. (KBr) 2240, 1730, and 1240 cm⁻¹; ¹H n.m.r. (CDCl₃) δ 4.55—4.95 (m, 1H, 3 α -H); (8), m.p. 226—228 °C; (9), m.p. 178—179 °C; (10), m.p. 214—216 °C; (12), (oil) i.r. (NaCl) 2240 cm⁻¹; ¹³C n.m.r. (CDCl₃) δ 117.67 (CN) and 118.84 p.p.m. (CN); (13), m.p. 119—122 °C; i.r. (KBr) 2100, 1675, and 1602 cm⁻¹; ¹H n.m.r. (CDCl₃) δ 6.40 (s, 1H, 1-H); ¹³C n.m.r. (CDCl₃) δ 133.94, 141.00, and 194.09 p.p.m. (C=O).